Overview

- Clinical Indications
- Advantages and Challenges
- Terminology
- Anterior eye anatomy
- Basic Design Features
- Instrumentation
- Fitting basics – lens selection, fitting, evaluation, follow-up
- Case presentations highlighting: Tips and Troubleshooting

Clinical Indications

- Vision Improvement
 - Correcting the irregular cornea
 - Corneal Ectasia
 - Primary – Keratoconus, Keratoglobus, Pellucid marginal degeneration (INTACS, CXL)
 - Secondary – post-refractive surgery, corneal trauma
 - Corneal Transplant
 - Corneal Degenerations
 - Normal Cornea
 - Presbyopia, moderate to high corneal astigmatism

- Ocular Surface Protection
 - Dry Eye
 - Incomplete lid closure

- Cosmetic/Sports
 - Hand-painted scleral lenses
 - Ptosis
 - Water sports

Advantages of Scleral GPs vs Corneal GP

- Centration
 - Fitting a “regular” part of the eye
- Lens Retention
 - Minimal chance of inferior standoff
- Comfort
 - Reduced lid interaction; no corneal interaction
- Vision
 - Masking severe corneal irregularity

Challenges associated with scleral lenses

- Handling
 - Difficult I and R (initially)
 - Apprehensive patients
- Fitting
 - Subtle fit indications
 - Increased chair time
- Physiology
 - Dk/L – Oxygen must diffuse over great distance
 - Long-term effects of scleral lens wear are unknown
Terminology

- Classification
 - Corneo-scleral: 12.9mm to 13.5mm
 - Semi-Scleral: 13.6mm to 14.9mm
 - Mini-Scleral: 15.0mm to 18.00mm
 - Full-Scleral: 18.1mm to 24+

Anatomy and Shape of the Anterior Ocular Surface

- Maximum scleral lens size for normal eye: 24mm
- Scleral Shape Study

Anatomy and Shape of the Anterior Ocular Surface

- Clinical Consequences
 - Temporal-Inferior decentration of scleral lenses
 - Inferior decentration
 - Weight/gravity
 - Eyelid pressure
 - Temporal
 - Flatter nasal elevation
 - Conjunctival Prolapse

Basic Design Features

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
- Optic Zone
 - Centermost zone
 - Optics/Lens power
 - Anterior surface
 - Back surface
 - Ideally mimics corneal shape
 - Completely vaults cornea

Scleral Lens Education Society
June 2013
www.sclerallens.org
Basic Design Features

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface

 Transition Zone
 - Mid-periphery or limbal zone
 - Creates the sagittal height
 - Can be reserve geometry
 - Completely vaults limbus

- Toric Lens Designs
 - Front
 - Anterior surface front toric optics to improve vision
 - Located on the front surface of the central optical zone
 - Indicated when residual cylinder over-refraction is found
 - Needs stabilization
 - Dynamic stabilization zones or prism ballast
 - LARS

- Toric Lens Designs
 - Back
 - Landing zone is made toric to improve fit
 - Does not interfere with central zone of scleral lens
 - Better ocular health
 - Fewer areas of localized pressure
 - Decreased bubble formation
 - Longer wearing time and better patient comfort
 - More frequently needed in larger diameter sclerals

- Toric Lens Designs
 - Bitoric
 - Front surface toric optical power
 - Back surface toric periphery
 - No need for lens stabilization

- Multifocal Scleral lens design
 - Simultaneous Multifocal Lens Design
 - Aspheric or concentric
 - Center Near and Center Distance Designs
Basic Design Features

- Lens Material
 - High Dk lens material; plasma or hydrapeg
 - Considerably thicker when compared to corneal GP
 - 250 microns to 500 microns
 - Optimum Extra, Boston XO, Tyro 97

- Increasing Oxygen transmissibility
 - 1. high Dk material
 - 2. minimal tear clearance behind the lens
 - 3. Reduced center thickness of the lens

Example Parameters:
- BC: 7.50
- PC1: 7.85 (if reverse geometry 6.89)
- PC2: 9.00
- PC3: 12.25
- PC4: 14.00

Fitting Basics

- Completely vault the cornea and limbus while aligning to the bulbar conjunctiva

How can I vault a steep cornea with a flat lens?

BC much flatter than “K”

Very steep cornea

Fitting Basics

- 1. Diameter
- 2. Clearance
- 3. Landing Zone Fit
- 4. Lens Edge
- 5. Asymmetrical Back Surface Design
 - Some trial sets are toric back surface

Fitting Basics

- 1. Diameter
 - Choose a Fitting Set
 - Direct vs Indirect control
 - Laboratory warranty/exchange policy
 - Overall Diameter
 - Larger – more clearance needed, ectasias
 - Smaller – easier to handle, less clearance
Fitting Basics

• 1. Diameter
 – HVID
 • <12mm
 – Start with a 16.0 or smaller lens
 • >12mm
 – Start with a 16.0 or larger lens
 – Diameter of the optical zone and the transition zone chosen roughly 0.2mm larger than the corneal diameter

Fitting Basics

• 2. Clearance
 – Minimum of 100 microns
 – Typically aim for 200-300 microns after settling
 – Maximum of 600 (if desired)
 – Base Curve Determination
 • Select an initial base curve that is flatter than the flat k value

Fitting Basics

• Evaluate overall corneal chamber appearance
 – Diffuse beam, low mag, medium illumination
 – Observe centration, areas of bearing, tear lens appearance, look for bubbles

Fitting Basics

• Evaluate central clearance
 *Compare lens thickness to tear lens thickness and estimate central clearance in microns

Fitting Basics

Look for continuity of the tear lens...

Acceptable clearance:

Too little clearance:
Fitting Basics

• Change lens base curve/sagittal depth until desired central clearance is reached
 – Considerations:
 • All scleral lenses will settle over a period of hours
 • Expect ~90 to 150 microns settling
 • Aim for 150 to 300 microns after settling
 • Build-in settling time into fitting session ~30 min

Fitting Basics

• UMSL Study:
 – No significant settling after 4 hours of wear
 – Most settling within the 1st hour
 – Large Diameter Scleral settle ~90 microns, slower
 – Mini Scleral ~130 microns, faster

Fitting Basics

• Evaluate remaining corneal chamber
 – Optic Section
 – Sweep limbus to limbus noting tear lens thickness
 – Looking for tears in optic section beyond the limbus and should increase in thickness toward the central cornea
 Adequate limbal clearance is critical for an acceptable fit and good tear exchange

Fitting Basics

• Anterior Segment OCT

Fitting Basics

• 3/4. Landing Zone Fit/Edge
 • Bulbar conjunctival vessels
 • Look for blanching
 – Inappropriate scleral curve alignment
 – Typically indicates PC is too tight
 – Or new toric back surface haptics
 • Confirm no lens movement

Fitting Basics

• Ideal alignment when vessels course unobstructed under the scleral curves
Fitting Basics

• Properly fitted scleral curves
 ▸ Vessels course unobstructed
 ▸ No blanching seen
 ▸ No movement
• Improperly fitted scleral curves
 ▸ Blanching seen in primary gaze
 ▸ Patient discomfort likely
 ▸ Difficult removal
 ▸ Redness after removal

Fitting Basics

• Anterior Segment OCT

Fitting Basics

• 5. Asymmetrical Back Surface Design
 – Allows for more equal pressure distribution
 – Can help center a inferiorly decentered lens
 – Flat and steep meridian
 ▸ Can adjust either independently
 ▸ Flat meridian is typically marked
 ▸ Will lock into place
 ▸ Usually has a dot for correct insertion

Fitting Basics

• Over-Refraction
 – Expect close to spherical OR
 – If OR yields significant cylinder check - flexure
 ▸ Do over-keratometry or over-topography
 – Residual Cylinder
 ▸ Front surface toric
 ▸ Usually has a great visual outcome

Fitting Basics

• Design and Order
 – Often lens modifications will need to be made from the best trial lens fit
 – Lab Consultants are helpful
 ▸ Some warranties require consultation when re-ordering
Fitting Basics
Scleral Lens Handling

• Insertion
 – Prepare Lens
 • Large DMV
 • Clean lens, rinse
 • Fill with non-preserved sol
 – 0.9% NaCl inhalation sol
 – Off label: Addi-pak, modudose
 – Lacripure, scleral-fil
 – Refresh Optive single vials
 – Celluvisc

• Removal
 – Loosen Lens – gently nudge lens
 – Medium DMV
 • placed on inferior portion of lens
 – Hold both lids

Fitting Basics
Lens Insertion

• Place paper towels on patient’s lap
• Have patient tuck chin to chest and look straight down
• Have patient hold lower lid
• Clinician hold upper lid
• Insert lens straight onto cornea
Fitting Basics
Scleral Lens Handling

- Educate patient about proper lens orientation upon insertion
 - Dots at 6 o'clock

Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Overall diameter (OAD)
 - Optic Zone Diameter (OZD)
 - Base Curve (BC)
 - PC width
 - PC radius of curvature
 - Center Thickness

Parameter Considerations

- Common Parameter Changes:
 - Adjustments to the transition zone
 - Allows clinician to increase or decrease central lens clearance without adjusting base curve or peripheral lens curves
 - Indicate to lab the amount of clearance you want to gain or lose

Parameter Considerations

- OZD changes: often done to improve fit
 - OZD increase without BC compensation

Parameter Considerations

- Increase OZD with BC compensation
 * Increased OZD without increasing sagittal height of lens
Parameter Considerations

- Common Parameter Changes:
 - Base Curve (BC)
 - Typically adjusted during initial fit
 - Flatter base curve to address peripheral lens tightness or excessive central clearance
 - Steeper base curve to increase central clearance or loose periphery
 - If you need to adjust the central clearance, but you are happy with peripheral alignment
 - Adjust sagittal height NOT base curve

- Scleral Curve Changes
 - Steeper PCs
 - Sag: 2.8 mm
 - 100 mic
 - Flatter PCs
 - Sag: 2.7 mm

Tips for Fitting

1. Go flatter than flat K value for initial lens selection
2. Use Fluorescein for initial lens selection
 - Use BLUE Light – GET THE PICTURE
 - Use WHITE Light – to evaluate everything else
3. Analyze Superior and Inferior lens edges in Primary Gaze
4. Try not to make parameter changes at dispensing

Tips for Follow-up

1. Ask patient: “How do you take care of your lenses”
2. Follow-up should be at least 2 hours after lens insertion
3. Paint the front of the lens to look for fluid exchange
4. Remove lens and evaluate cornea

Troubleshooting

- Problem: Decreased vision after insertion
 - Often caused by mucin build-up in tear lens
 - Begins ~30 min to 4 hrs after insertion

Patient states vision gets foggy after 2 hours of wear and gradual decreases in clarity over time ~200 microns clearance OD/OS
NaFL seeps under lens superiorly OD and 360 OS
Re-order: steeper PC OU
Troubleshooting

• **Problem:** Decreased vision after insertion

• **Possible Solutions**
 – Reinsert lens with fresh solution/ use solution mixture
 – Rx lid hygiene
 – Rinse eye prior to insertion
 – Refit with decreased central clearance/better peripheral alignment
 – Change lens material or Lens coating – Hydra-PEG

Troubleshooting

• **Conjunctival Prolapse**
 – Caused by negative pressure under the lens
 – More prominent in patients with loose conjunctival tissue or elderly patients

• **Solution**
 – Fit a asymmetrical back surface scleral lens to help alleviate the problem

Troubleshooting

• **Problem:** Diffuse Corneal Staining on follow-up
 – Due to fill media, care systems, AT’s or meds
 – Can be difficult to isolate cause
 – Can be more significant if tear exchange is low

• **Possible solutions:**
 – Switch Care systems
 – Rx 0.9%NaCl inhalation solution
 – Completely rinse MPS off lens
 – Confirm compliance with prescribed care

A severe case of stain

– 27 yo patient with Keratoconus OU
 • Wearing scleral lens OU – 2014
 • Hx of Corneal Crosslinking OU ('09)

• Presents 7/2017
 – Cc: blurred vision OS> OD
 – using clear care to clean lenses
 – sometimes sleeps in lenses
 – uses Boston Advance to fill lenses prior to insertion...
A severe case of stain

- 27 yo patient with Keratoconus OU
 - VA: 20/30 OD, 20/125 OS
 - SLE: Punctate staining OU, mild corneal edema OS
 - 150 microns clearance OU
 - Adequate limbal clearance
 - No peripheral blanching or impingement
- Plan: educated patient about proper lens care; RTC 1 week fitting

Troubleshooting

- Problem: Poor surface wetting
 - MGD can contribute / cause problem
 - Multipurpose Solution (MPS) may cause problems
 - Lens Material
- Possible Solutions:
 - Evaluate lid margins / tear film
 - Prescribe lid hygiene if necessary
 - Change MPS / Lens material
 - Lens Coating – hydra-PEG

Troubleshooting

- Problem: Corneal edema at follow-up
 - Can arise after weeks / months => f/u is important!
 - More common in post PK corneas
 - Higher risk in corneas with low endothelial cell count
 - Consider Dk/L as Dk is likely not the issue
- Possible Solutions:
 - Prevention: do endothelial cell count before fitting (1000 +?)
 - Scrutinize grafts at every visit!
 - Educate graft patients on symptoms of rejection: pain, light sensitivity, redness, blurred vision
 - Pain, light sensitivity, redness, blurred vision

Case TS: KCN and Fuchs

- Zenlens
 - Lens diameters of 16.0 mm and 17.0 mm – appropriate for a wide range of corneal sizes
 - Prolate and oblate designs to fit a wide range of corneal shapes
 - Smart Curve™: modify only the parameter you want, not the ones you don’t
 - Unique Options: Toric PC, MicroVault

Case TS: KCN and Fuchs

- Zenlens – initial lens selection
 - 16.0 diameter: 11.7 mm or smaller HVID
 - Prolate: KCN or normal cornea
 - Mild KCN or normal cornea
 - 4500 (16.00) sag / 4900 (17.0mm) sag
 - Advanced KCN
 - 4800-5500 sag
 - Oblate: Post graft, post refractive surgery, degenerations
Case TS: KCN and Fuchs

- Zenlens – assessment of fit
 - 1. Proper Central Vault
 - Adjust Lens SAG
 - 2. Mid-Peripheral Clearance
 - Adjust Base Curve
 - 3. Limbal Clearance
 - Adjust limbal clearance curve
 - 4. Scleral Alignment
 - Adjust peripheral curve

Case TS: KCN and Fuchs

- Keratoconus and Fuchs! Oh My!
 - At one year follow-up: family History of Fuch's

Troubleshooting

- Problem: Discomfort after several hours of wear
 - Poor peripheral fit
 - Lens is too small to support its weight
 - Corneal chamber too small

- Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Increase surface area of scleral curves
 - Increase OAD or corneal chamber size if appropriate

Troubleshooting

- Problem: Lens hurts upon removal with subsequent difficulty wearing it the next day
 - Poor peripheral fit – scleral compression
 - Causing rebound hyperemia and inflammation

- Possible solutions:
 - Changing Diameter
 - Changing peripheral curves

Troubleshooting

- Problem: lens hurts upon application but otherwise the eye feels fine
 - Mucus may adhere to back surface of lens

- Possible Solutions
 - Clean inside of lens bowl daily
 - Rx Progent (Menicon) to remove mucus
Troubleshooting

• Problem: Bubbles under the lens
 • Too much sagittal height/too flat peripheral curves
 – Improper insertion
 – Fenestration hole
• Possible Solutions:
 – Fill bowl completely with solution prior to insertion
 – Remove fenestration hole
 – Central bubble: Adjust lens parameters to decrease sagittal height
 – Peripheral bubbles: steepen peripheral curves or increase lens diameter

Troubleshooting

• Problem: Lens Fogging
 – Non-wetting lens
• Possible Solutions:
 – Change solutions
 – Polish lens surface
 – Avoid lotions with lanolin base
 – Plasma coat lens / Hydra-PEG

Patient GH (age 63)

• History: RK OU; 1991
• Lens history: Corneal Rev geo lenses; SO2 Clear
 – Discomfort OU in CLS, gets worse as day goes on, blurred vision, boston simplus solution, OD 1 month old; OS 1 year old
• Examination findings
 – 20/50 OD 20/25+ PH
 – 20/40 OS 20/25+ PH

Patient GH

• Lens Fitting
 – Diameter selection
 • Pt happy with current 14.5
 – Base curve
 • Current lenses 7.5
 – Valley Contax - Custom Stable Scleral Lens
 • 14.8 – 17.8 diameters
 • Toric PC and MF options

Central Touch in both eyes

Patient GH

• Examination findings
 – +2.25 -2.25 090 20/40+ +1.75 add
 – -1.00 -1.25 x 050 20/40+ +1.75 add
 – SO2Clear Aspheric Cone (fit in 2013)
 • OD: 7.50 / -7.00 / 14.5 20/50
 • OS: 7.5 / -7.50 / 14.5 20/40

• Lens Fitting Custom Stable Scleral Lens
 • OD: 7.5 / 14.8 / -4.00 OR -5.00 20/30
 – Good fit peripheral; minimal clearance centrally
 – Order changes: steepen the limbal curve to provide more central clearance
 • OS: 7.18 / 14.8 / -2.75 OR -2.75 20/25
 – Tight limbal curve with inferior blanching; excessive central clearance
 – Order changes: flatten limbal curve to decrease central clearance; flatten scleral curve to decrease peripheral compression
Patient GH

• Follow-up - Custom Stable Scleral Lens
 • OD: 7.5 / 14.8 / -8.75 1.5 steep limbus
 – 20/40; adequate central clearance
 – OR: +1.25 -1.50 x 010 20/30
 • OS: 7.18 / 14.8 / -8.75 1 flat limbus; 1 flat scleral
 – 20/40; adequate central clearance
 – OR: +0.50 -1.75 x 160 20/40+

– Patient notes improved comfort and vision with new lenses.

Patient CR (age 23)

• History: KCN OU
 – First presented for a new Hybrid Rx in summer 2016
 – Returned to clinic 8 months later with complaints:
 • Burning upon lens instillation OU; using Clear Care
 • Switch to Biotrue – now notes haze throughout the day....

• Current Lenses: Ultrahealth Hybrid OU
 – OD: -6.00 / 250 vault / medium skirt 20/20-
 – OS: -7.00 / 250 vault / flat skirt 20/20

• First Question: did you forget to replace your Clear Care case.......

Patient CR

• Yes – she forgot to replace her clear care case!

Patient GH

• Custom Stable Scleral Lens
 • OD: 7.5 / 14.8 / -7.50 -1.25 x 013 20/30
 – 1.5 steep LCZ
 • OS: 7.18 / 14.8 / -8.25 -0.75 x 162 20/40-
 – 1 step flat LCZ; 1 step flat SLZ

– Patient notes improved comfort and vision with new lenses.

• Patient is interested in exploring other lens options.
 – Wants comfortable lenses
 – Re-fit patient in a scleral lens

Patient CR
Patient CR

- MR:
 - OD -9.00 -3.25 x 047
 - OS -12.00 - 2.00 x 015
- Average K’s OD ~ 51 OS ~49
- Select a scleral lens slightly flatter than ave K
 - 7.18 (47.00D)
- Diameter
 - Ultrahealth lenses 14.5
 - No issues with I and R – selected 15.8

Patient CR

- 7.18 / 15.8 / -6.00 OU
 - OD OR +1.00 -1.50 x 125 20/20
 - Excessive central clearance; peripheral alignment
 - OS OR +0.25 20/20
 - Excessive central clearance; peripheral alignment

Patient CR

- Ordered/Dispensed: 7.18 / 15.8 OU
 - OD: -5.00 -1.50 x 125; 1.25 steep Limbus 20/20
 - OS: -5.75; 1.00 steep Limbus 20/20

Patient TH (age 19)

- Presents for a contact lens evaluation
 - New diagnosis of KCN, age of 16
 - Never worn correction
 - Dad just wants him to have surgery!
 - Autism, ADD, plays Cello and video games
 - Student
 - 20/60 OD 20/400 OS
 - PH 20/30 20/60
Patient TH (age 19)

- MR
 - -13.00 -3.00 x 030 20/50
 - -9.50 -2.50 x 090 20/100
- SLE: KCN OU; significant central scarring OS

Patient TH

- Small diameter scleral lens
 - Patient has an amazing blink reflex....

- 43.00 / 15.8 / -2.00 OR -0.75 20/25
 - 210 micron clearance, good periphery
- 47.00 / 15.8 / -6.00 OR -1.00 20/50
 - 113 micron clearance, good periphery

• Adjust limbal curve 0.50 OD / 1.00 OS steeper

Patient TH

- Dispensing
 - 43.00 / 15.8 / -2.75 20/20-
 - 47.00 / 15.8 / +7.00 20/50 OR -0.50 20/30+
- I and R training......
Patient TH

- Follow-up
 - OD 20/20: OR +0.50 20/20
 • Central clearance good; slight blanching 5-6 o'clock
 - OS 20/30: OR pl
 • Slightly tight periphery 360; central clearance good
- I and R update
- Re-order
 - OS only: 1 step flat PC

Patient TH

- OD 20/20
 - 258 micron central clearance
 - Alignment in periphery
- OS 20/50
 - 342 central clearance
 - OR: -0.50 20/30+
 • Decrease central sag 50 microns
 - Re-order OS again
 - 47.00 / 15.8 / -7.50
 - Limbal 0.50 step steep
 - Periphery 1 step flat

Patient BK, age 33

- History: KCN OU (Dx age 15); intacs OD
- Lens history: corneal GP lenses; piggyback OD
- Current lenses:
 - OD: -7.00 / 7.85 / 10.0 20/70+
 - OS: -5.25 / 7.25 / 10.0 20/50+
- MR
 - OD: -6.25 – 3.75 x 065 20/20
 - OS: -8.25 – 5.50 x 109 20/20

Patient BK

- Lens selection
 - Specialty Corneal
 - Scleral
- K values
 - OD: 44.5D / 47.4D
 - OS: 45.4D / 47.6D

Patient BK

- Intralimbal (prism 1.25 OU)
 - OD: 7.85 / 11.2 / -4.37 – 1.50 x 145
 - OS: 7.34 / 11.2 / -8.00 – 1.75 x 014
 - 20/25+ OR: -0.50 20/20
 - 20/40: OR: -0.75 20/30

Patient BK

- Lens fitting
 - Intralimbal; previous lenses wear 10.0
 - OD: 7.85 / -1.12 / 11.2 OR: -3.25 -1.50 x 145
 - 20/20
 - OS: 7.34 / -1.75 / 11.2 OR: -6.75 – 2.00 x 014
 - 20/20
Patient BK

• OD:
 - Good visual outcome
 - Centrally good lens to cornea relationship
 - Inferior edge lift

• Re-order
 - OR
 - 2 steps steep inferior quad only

• OS:
 - Poor visual outcome
 - Bubble and steep fit
 - Re-fit smaller diameter
 - See if can improve vision without front surface toric
 - Looking for improved fit

Patient BK

• OS: Dyna-Z cone
 - -4.00 / 7.20 / 8.8 OR -6.75 20/20
 - Central alignment
 - Inferior edge lift
 - Order
 • OR
 • 2 steps steep inferior quad

Patient BK

• Final lenses??:
 - OD…… / Corneal OS

• Patient experienced discomfort with new intralimbal.
 - Attempted fit with reverse geometry IL

Patient BK

• Patient is unhappy with visual outcome with soft toric (not surprising)
• He lives 2 hours away from clinic
• Per a phone conversation, I convinced him to try scleral lenses

Patient BK

• Synergeyes VS Scleral lens
 - Toric Periphery
 • Control both Flat and Steep Meridians

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Fit</th>
<th>Synergeyes VS Scleral lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal Depth</td>
<td>Flat and Steep Meridian Toric</td>
<td>0.05 to 0.30 D vs 0.05 D max</td>
</tr>
<tr>
<td>Base Curves</td>
<td>3.2 to 0.3 mm in 0.1 mm steps</td>
<td>2.4 to 5.5 mm in 0.1 mm steps</td>
</tr>
<tr>
<td>Diameter</td>
<td>14.0 to 17.5 mm in 0.5 mm steps</td>
<td>18.0 to 19.0 mm in 0.5 mm steps</td>
</tr>
</tbody>
</table>

Fitting Set: Flat/Steep ~180 microns difference at lens edge
Patient BK

- Synergeyes VS Scleral lens
 - Central Optic Zone — controlled by adjusting sagittal depth (3000 microns to 4600 microns)
 - Scleral Landing Zone — adjust both flat and steep meridians of toric periphery
 - Mid-Peripheral (Limbal Zone) — adjust SLZ or Base Curve

After settling: 200 microns central clearance and 100 microns limbal

Patient BK

- Synergeyes VS Scleral lens
 - Diameter 16.0
 - Base curve 8.4
 - Sagittal Depth: 3400 OD 3600 OS

Patient BK

- Synergeyes VS Scleral lens — Lenses Ordered
 - OD:
 - BC 8.4 Periphery: 36 flat curve / 42 steep curve
 - Sagittal Height: 3400 Power -2.25
 - OS:
 - BC 8.4 Periphery: 36 flat curve / 42 steep curve
 - Sagittal Height: 3600 Power -2.75

Patient BK

- Synergeyes VS
 - Initial Lens selection:
 - 1. start with yellow circle
 - 2. Use Rx fitting resource
 - 3. Use Experience

Patient BK

- Synergeyes VS Scleral lens
 - OD: 300 microns central clearance
 - Rotated 22 degrees N
 - Alignment in periphery
 - OR: -2.25 20/25
 - OS: 400 microns central clearance
 - Rotated 20 degrees N
 - Alignment in periphery
 - OR: -2.75 20/25+

Patient BK

- Follow up
 - OD: 250 microns central clearance (50 at limbus)
 - Aligned 18 degrees nasal from 3 o’clock
 - Alignment in periphery — no blanching or impingement
 - OR pl 20/20
 - OS: 340 microns central clearance (50 at limbus)
 - Rotated 25 degrees nasal from 3 o’clock
 - Alignment in periphery — no blanching or impingement
 - 20/25 OR -0.50 20/20
Patient BK

- Follow up

Patient AB

- History: KCN OU; crosslinking OU
- Lens history: soft toric lenses

Patient AB

- Examination findings
 - MR:
 - OD +0.75 -3.50 x 060 20/70+
 - OS -0.25 -0.75 x 142 20/100+
 - Lens options
 - Specialty Corneal lens
 - Patient attempted to wear and could not adapt
 - Intralimbal design
 - Patient attempted to wear and could not adapt
 - Scleral Lens

Patient AB

- Boston XO: 15.8; 7.85 bc OU
 - Excessive clearance noted OU
 - Need to reduced by 100 microns each eye
 - OD: 20/20
 - OS: 20/20
 - Adjusted Limbal curve to adjust central clearance
 - Adding reverse curve into lens adjust corneal chamber without adjusting base curve
Patient AB
- New lenses feel great.

Final Thoughts
- Consider mini-scleral / scleral for appropriate patients
 - Select one lab, one design
- First couple fits are the most challenging
- Scleral lenses are not going away

Final Thoughts
- Consultants are a great resource
- Huge practice building opportunity