CASE 1

Case History

• 38 black male, complaining that the vision in his right eye is blurry.
 — Got the current Rx 3 weeks previously, and started out good but in last couple of days OD vision has become blurry
• Medical Hx: no current health concerns and no medications
Entrance Skills

• Va’s: OD: 20/25, OS: 20/20
• Pupils: PERRL
• CVF: full to finger count
• EOM’s: FROM
• Amsler: central metamorphopsia OD
• HVF: 10-2 (see VF)
CASE 2

Lid Nevi

- Lid nevi:
 - congenital or acquired
 - occur in the anterior lamella of the eyelid and can be visualized at the eyelid margin.
- The **congenital eyelid nevus** is a special category with implications for malignant transformation.
- With time, slow increased pigmentation and slight enlargement can occur.
- An **acquired nevus** generally becomes apparent between the ages of 5 and 10 years as a small, flat, lightly pigmented lesion.

Congenital Nevus

- The nevus is generally well circumscribed and not associated with ulceration.
- The congenital nevus of the eyelids may present as a "kissing nevus" in which the melanocytes are present symmetrically on the upper and lower eyelids.
 - Presumably this nevus was present prior to eyelid separation.
Congenital Nevus

- Most nevi of the skin are not considered to be at increased risk of malignancy.
 - However, the large congenital melanocytic nevus appears to have an increased risk of malignant transformation of 4.6% during a 30 year period

Acquired Lid Nevi

- Acquired nevi are classified as:
 - junctional (involving the basal epidermis/dermis junction), typically flat in appearance
 - intradermal (involving only the dermis), tend to be dome shaped or pedunculated
 - compound (involving both dermis and epidermis) tend to be dome shaped

CHRPE vs Nevus
Nevi Trivia

• 31% of choroidal nevi show slight enlargement over time without the transformation to a melanoma (Ophthalmology 2011)

• The prevalence of choroidal nevi in the white U.S. population ranges from 4.6% to 7.9%
 – If it is assumed that all choroidal melanomas arise from preexisting nevi, then the published data suggest a low rate (1/8845) of malignant transformation of a choroidal nevus in the U.S. white population. (Ophthalmology 2005)

• Choroidal melanoma risk for metastasis, ranging from 16% to 53% (at 5 years of follow-up) depending on the size of the tumor at the time of diagnosis. (Arch Ophthalmol 1992)

TFSOM—“To Find Small Ocular Melanoma”

Thickness: lesions >2mm

Fluid: any subretinal fluid (suggestive of serous retinal detachment)

Symptoms: photopsia, vision loss

Orange pigment overlying the lesion

Margin touching optic nerve head (<3mm)

• None of these factors = 3% risk of a nevus converting to melanoma in five years.
 One of these factors = 8% risk of conversion in five years.
 Two or more factors = 50% risk of conversion in five years.
 For any changes noted during the course of follow-up, refer the patient to a retinal practice or an ocular oncology service.

TFSOM-UHHD:

“To Find Small Ocular Melanoma Using Helpful Hints Daily”

Thickness: lesions >2mm

Fluid: subretinal fluid

Symptoms: photopsia, vision loss

Orange pigment overlying the lesion

Margin touching optic nerve head (<3mm)

Ultrasound Hollowness

Halo absence

Drusen absence

• Choroidal nevi showing no features should be initially monitored twice yearly and followed up annually

 • 1 or 2 features should be monitored every 4 to 6 months.

 • Nevus with 3 or more features should be evaluated at an experienced center for management alternatives and possible treatment owing to the high risk of ultimate growth.
Case

- 65 yr old white male
 - Notices spot in vision in his left eye
 - Diabetes for 15 years
- Vision: 20/20 (6/6) and 20/40 (6/12)
- Dilated exam:
 - Large lesion noted in left eye (not noted in exam 6 months previously
 - See photo and B-scan
Ocular Tumors

Astrocytic Hamartoma Amelanotic Melanoma

Retinoblastoma Metastatic Choroidal Tumor

Choroidal Melanoma Metastases

• 80 to 90% of metastases from uveal melanoma occurred in the liver, less common sites being the skin and lung.

Melanoma and Mortality

• Tumor Size:
 – 5-year mortality after enucleation:
 • 16% for small melanoma,
 • 32% for medium melanoma, and
 • 53% for large melanoma.
 – the prognostic importance of tumor size:
 • each 1-mm increase in melanoma thickness adds approximately 5% increased risk for metastatic disease at 10 years

• Tumor genetics:
 – Chromosome monosomy 3 (approx 50% of patients)
 • 50% of them develop metastasis within 5 years of diagnosis
 • 70% mortality within 4 years of ocular treatment
 • one of the most important independent risk factors of poor survival
CASE 3

30 YR WM

• Patient calls from his PCP office asking if we can see him today because he has had red/painful eyes for over a week and has not resolved
• Medical history:
 – Past week has been experiencing painful urination and discharge
 – New sexual partner approx 10 days ago, who also had developed a red eye
 – Chlamydia and gonorrhea testing were negative
 – Has tested positive for HSV2 but no current flare up

30 YO WM

• Medications:
 – In the past week patient:
 • 2 courses of azithromycin (1 gram each)
 • Injection of rocephin
 • Injection of penicillin G
 • Currently taking doxycycline 100 mg bid
 • Valtrex 1 gram 3 times per day for 7 days (d/c 1 day ago)
 • Was on Vigamox qid for 7 days (d/c 1 day ago)
• VA: 6/7.5 (20/25) OD, OS
• Entrance skills unremarkable though some pain on eye movement
30 YO WM

• SLE:
 – 2+ injection conjunctival both eyes
 – 1-2+ lid edema
 – Mixed papillary and follicular response
 – 1-2+ diffuse SPK (no staining noted above infiltrates)
 – No cells or flare noted

30 YO WM

• AdenoPlus:
 – Performed on the right eye (patient felt that was the worst eye)
 – Negative

30 YO WM

• Started patient on the miracle drop
 – Tobradex 4 times per day and scheduled patient to come back the next day
• 1 day f/u
 – Patient was feeling better
 – Less redness and much reduced photophobia and discomfort
 – No improvement on painful urination or discharge and is now seeing blood in his urine
 – Continue tobradex 4 times per day and RTC in 4 days for f/u with dilation and told to contact PCP to update on the blood in the urine
30 YO WM

- 4 day f/u:
 - Patient says his eyes are doing great and that all of his urogenital problems abruptly stopped on Saturday
 - Discussion with PCP: Kidney stone
 - What was going on with the eye?
 - Viral conjunctivitis likely EKC

What did we learn from this?

CASE 4

Case

- 50 YR WM
- POHx: had cataract surgery in his left eye at age 25 secondary to trauma to the eye,
 - Has a mid-dilated pupil post trauma
- PMHx: no known health problems and no medications
- VA: 6/6 (20/20) OD, OS
Health Assessment

• SLE:
 – OD unremarkable
 – OS: mid-dilated pupil with sluggish response to light
 • PCIOL well centered and no haze
• IOP: OD 12 and OS 26 mm Hg (TAG)
 • NCT OS (31 and 23)
 • Second visit: OD: 13 and OS: 27

Health Assessment

• Gonioscopy:
 – OD: unremarkable
 – OS: see photo

Optic Nerves

OS

OD
Visual Fields

Ganglion Cell Analysis

RNFL and ONH Analysis
CASE 5

Case

- 65 year old Caucasian patient presents with sudden onset loss/blurring of vision in the right eye
- PMHx: HTN for 15 years, takes “water pill”
- VA’s: 20/60 OD, 20/25 OS
- Pupils: PERRL – APD
- CVF: Inferior defect right eye, no defects noted in the left eye

Vision Loss Without Pain: Diabetes/Diabetic Retinopathy

- Microvascular complications resulting in capillary closure & abnormal permeability
- S&S include:
 - blurring of vision (maculopathy and refractive error shifts),
 - sudden drop in vision (vitreous heme),
 - dot and blot hemes,
 - exudate,
 - cotton wool spots,
 - neovascularization (iris, retina and disc)
Diabetic Retinopathy

CSME (DME)

CSME (DME) OCTA

VEGF and DME
Aug. 10, 2012: FDA approves Lucentis to treat diabetic macular edema

- The drug’s safety and effectiveness to treat DME were established in two clinical studies involving 759 patients who were treated and followed for three years.
 - patients were randomly assigned to receive monthly injections of Lucentis at 0.3 milligrams (mg) or 0.5 mg, or no injections during the first 24 months of the studies
 - after 24 months, all patients received monthly Lucentis either at 0.3 mg or 0.5 mg
- Results:
 - 34.45% of those treated with monthly Lucentis 0.3 mg gained at least three lines of vision compared with 12-18% of those who did not receive an injection.

Vision Loss Without Pain: Vein Occlusion

- Associated with:
 - hypertension,
 - coronary artery disease,
 - DM and
 - peripheral vascular disease.
- Usually seen in elderly patients (60-70), slight male and hyperopic predilection.
- Second most common vascular disease after diabetic retinopathy.

Branch Retinal Vein Occlusion: Signs/Symptoms

- BRVO: sudden, painless, visual field defect.
 - patients may have normal vision.
 - quadrantic VF defect,
 - dilated tortuous retinal veins with superficial hemes and CWS
 - typically occurs at A/V crossing (sup/temp)
BRVO

- BRVO more common than CRVO and has more favorable prognosis
 - Overall 50-60% of BRVO patients will maintain VA of 20/40 or better
- Visual loss results from:
 - Macular edema
 - Foveal hemorrhage
 - Vitreous heme
 - Epiretinal membrane
 - RD
 - Macular ischemia
 - Neovascularization complications

http://www.healio.com/ophthalmology/journals/osli/

Study Design (n=397) BRVO

- BRVO retinal Vein Occlusion study safety/efficacy
- 1:1:1 Randomization
- Ranibizumab 0.3 mg
- Ranibizumab 0.5 mg
- Ranibizumab 0.3 mg
- Rescue Laser (if eligible beginning at Month 3)
- PNR ranibizumab for all patients Rescue Laser (if eligible beginning at Month 3)
- Month 6 Primary Endpoint
Mean Change from Baseline BCVA

BRVO

The gain of additional 3 lines occurred at a rate of 61% of 0.5 mg AVT grp, 55% for 0.3 mg AVT & 29% placebo.

Central Retinal Vein Occlusion: Signs/Symptoms

- CRVO: thrombus occurring at lamina is classical theory but new evidence indicates that the occlusion is typically in the optic nerve posterior to the lamina cribrosa.
 - decreased VA ranging from near normal to hand motion with majority 20/200 range
 - dilated tortuous vessels, with numerous retinal hemes and CWS

Central Retinal Vein Occlusion

- Visual morbidity and blindness are primarily from:
 - persistent macular edema,
 - macular ischemia and
 - neovascular glaucoma
Central Retinal Vein Occlusion

- CRVO's can be ischemic or non.
 - Classical definition of ischemic is 10-disc area of non-perfusion found on angiography
 - RAPD and ERG maybe better predictor
 - VA's typically worse in ischemic
 - Increased number of cotton wool spots with decreased VA maybe predictive

Central Retinal Vein Occlusion

- Ischemic CRVO may lead to iris neovascularization and neovascular glaucoma
 - Estimated apprx 20% of CRVO's are ischemic with 45% of those developing neo
- Regular examinations (1-2 wks) to monitor for ischemia or neo development
 - should include gonio as angle neo can precede iris rubecosis

Study Design CRUISE (n=392)

- 1:1 Randomization
- Sham (n=130)
- Ranibizumab 0.3 mg (n=130)
- Ranibizumab 0.5 mg (n=130)

Monthly Injections (Last at 114M) M to Period

RUNOUTS available for all patients: 1M to period

- 0.5 mg
- Ranibizumab 0.3 mg
- Ranibizumab 0.5 mg

Month & Primary Endpoint
Vision Loss Without Pain: Artery Occlusion

- Primarily embolic in nature from cholesterol, calcifications, plaques.
- Usually occurs in elderly associated with:
 - Hypertension (67%),
 - Carotid occlusive disease (25%),
 - DM (33%) and
 - Cardiac valvular disease.
- Sudden loss of unilateral, painless vision
 - Defect dependent upon location of occlusion

Vision Loss Without Pain: Artery Occlusion

- BRAO typically located in temporal retinal bifurcations.
CRAO

- CRAO has profound vision loss with history of amaurosis fugax.
 - Vision is usually CF (count fingers) to LP (light perception) with positive APD.
 - Diffuse retinal whitening with arteriole constriction, cherry red macula.

Ophthalmic Emergency

- Treatment is controversial due to poor prognosis and questionable benefit.
- Treat immediately before workup, if patient presents within 24 hours of visual loss:
 - Digital ocular massage,
 - systemic acetozolamide (500 mg IV or po),
 - topical ocular hypertensive drops (lopidine, B-blocker),
 - anterior chamber paracentesis,
 - consider admission to hospital for carbogen Tx (high carbon dioxide)

Macular hole

- Unilateral, decreased vision
 - Often in 60-80 year old women
 - Anyone w/ a history of trauma
- Symptoms:
 - Decreased vision, metamorphopsia
 - 20/200 for full thickness holes
- Signs:
 - Red hole in the macula
 - (+) Watzke-Allen sign
Macular hole

- Stages
 - Stage 1a -> impending hole. Normal foveal depression with yellow spot/dot in fovea.
 - Stage 1b -> Abnormal foveal depression with yellow ring.

Stage 1b macular hole

Macular hole

- Stages
 - Stage 2 -> Small full-thickness hole. 20/80 - 20/400.
 - Stage 3 -> Full-thickness hole w/ cuff of SRF. No PVD
 - Stage 4 -> Full-thickness hole with cuff of SRF, with complete PVD.

Stage 2 macular hole

Macular hole

- Stages
 - Stage 2 -> Small full-thickness hole. 20/80 - 20/400.
 - Stage 3 -> Full-thickness hole w/ cuff of SRF. No PVD
 - Stage 4 -> Full-thickness hole with cuff of SRF, with complete PVD.

Stage 3 Macular hole

Stage 4 macular hole
New Macular Hole Staging

Table 2: Correlation between Commonly Used Clinical Macular Hole Staging and the International Vitreomacular Traction Study Classification System for Vitreomacular Adhesion, Traction, and Macular Hole

<table>
<thead>
<tr>
<th>Full-Thickness Macular Hole Stages in Common Use</th>
<th>International Vitreomacular Traction Study Classification System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Intact macular hole</td>
<td>VMA</td>
</tr>
<tr>
<td>Step 2: Small hole</td>
<td>VMT</td>
</tr>
<tr>
<td>Step 3: Large hole</td>
<td>Small or medium FTMH with VMT</td>
</tr>
<tr>
<td>Step 4: FTMH with PVD</td>
<td>Medium or large FTMH with VMT</td>
</tr>
</tbody>
</table>

Small FTMH w/o traction

B

154 microns

237 microns
New Macular Hole Staging

Table 2. Correlation between Commonly Used Clinical Macular Hole Stages and the International Vitreomacular Traction Study Classification Scheme for Vitreomacular Adherence, Traction, and Macular Hole.

<table>
<thead>
<tr>
<th>Full-Thickness Macular Hole Stages in Common Use</th>
<th>International Vitreomacular Traction Study Classification System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Initial macular hole</td>
<td>VH/MV</td>
</tr>
<tr>
<td>Step 2: small hole</td>
<td>Small or medium FTMH w/o VAT</td>
</tr>
<tr>
<td>Step 3: large hole</td>
<td>Medium or large FTMH w/ VAT</td>
</tr>
<tr>
<td>Step 4: FTMH with PVD</td>
<td>Small, medium, or large FTMH without VAT</td>
</tr>
</tbody>
</table>

Image C: Medium FTMH w/o traction

250-400 microns

Image D: Large FTMH with traction

> 400 microns

Case 6
13 YR Female

CC: noticed that her left eye became blurry and objects were “wavy” a couple of days ago. Sudden onset and she had experienced a headache over the left eye just prior to the vision going blurry.

Ocular Hx: she currently wear glasses for distance

Medical Hx: she is currently not diagnosed with any health problems and is not taking any medications

Entrance Skills

VA with current Rx: 20/30 OD and 20/30 OS

Entrance skills unremarkable

Amsler: metamorphopsia OS

BCVA: 20/20 OD with increased minus, no improvement possible in the left eye

IOP's: 13 mm Hg OD and OS

Fundus Photos
Retina Consult

- Referred patient to retina and they confirmed the diagnosis of VKH.
- She was begun on oral prednisone 60 mg per day and she was re-evaluated in 1 week.
- At the follow up, there was reduction in her serous retinopathy and vision was improved.

From the Experts

- Vogt-Koyanagi-Harada (VKH) disease is a multisystemic disorder characterized by granulomatous panuveitis with exudative retinal detachments that is often associated with neurologic and cutaneous manifestations.
- VKH disease occurs more commonly in patients with a genetic predisposition to the disease, including those from Asian, Middle Eastern, Hispanic, and Native American populations.
From the Experts

• VKH:
 – Patients have no prior history of ocular trauma or surgery
 – Patients have no evidence of another ocular disease based on clinical or laboratory evidence
 – Patients have bilateral ocular involvement.

From the Experts

• VKH:
 – The neurologic and auditory signs include the following:
 • Malaise, fever, headache, nausea, abdominal pain, stiffness of the neck and back, or a combination of these factors; headache alone is not sufficient to meet the definition of meningitis
 • Tinnitus
 • Cerebrospinal fluid pleocytosis
 – Integumentary signs include the following:
 • Alopecia: loss of body hair
 • Poliosis: loss of pigment in hair
 • Vitiligo: loss of skin pigmentation in blotchy pattern

VKH Treatment

• For most patients with bilateral serous detachments and severe visual loss, begin therapy with systemic prednisone (1-2 mg/kg/day).
• The length of treatment and subsequent taper must be individualized for each patient.
 – Most patients require therapy for 6 months and occasionally up to 1 year before successful tapering of systemic corticosteroids.
 – Systemic therapy should not be discontinued during the 3 months following the onset of the disease because of the risk for recurrence.