Course Goal

• To provide useful clinical information in the diagnosis and treatment of optic nerve disorders.
 • Functional anatomy
 • Common conditions
 • Case examples
 • Interactive

Functional Anatomy

• The Optic N. links the eye with the Central Nervous System (CNS).
• Composed of retinal ganglion cell axons that synapse in the lateral geniculate nuclei (LGN).

Intraocular Optic Nerve

• AKA “Optic N Head”
 • Nerve Fiber Layer
 • Unmyelinated axons
 • allow max light transmission to photoreceptors
 • Coalesce into bundles as they enter ONH
 • Lamina Choroidalis
 • Glial cells with intertwining cell processes
 • Nerve fibers enter ONH and turn to exit the globe at level of choroid
Optic Nerve Head

- Lamina Cribosa
 - 6-10 perforated connective tissue plates
 - Allow passage of NFL bundles
 - Support for nerve fibers
 - Axons become myelinated at LC posterior border

Intraocular Optic Nerve

- Optic Disc
 - Visible tip of intraocular ON
 - Vertical ellipse
 - 1.5mm x 1.8mm
 - No photoreceptors

Intraocular Optic Nerve

- 90% of fibers arise from macula
- Therefore, early signs of ON Dx reflect macular function
 - Reduced acuity, contrast sensitivity
 - Impaired color vision
 - Central scotoma

Nerve Fibres

- Fiber in red circle
- Posterior ciliary vessels
- Nerve root fibers
- Photoreceptors (not shown)
- Outer plexiform layer
- Optic disc (not shown)
Intraorbital Optic Nerve

- 25 mm long
- Shaped like elongated S
- Allows limited motion
- Surrounded by fat, EOMs (and nerves)
- Also close proximity to Ophthalmic A., Ciliary Ganglion and nerves

Case

- 12 yo BF
- S/P fever 2 wks prior
- Patient has a cat
- Note disc edema and macular star

Objective Findings

- BCVA 20/20 OD
 20/80 OS
- Full extraocular movements
- +RAPD OS
- Dyschromatopsia OS
- Confrontation VF deficits OS
- BP 121/69 mmHg

Neuroretinitis

Note disc edema and macular star

Optic Nerve Quiz

- The most likely etiology is:
 a. Herpes simplex
 b. Streptococcus
 c. Diabetes
 d. Bartonella henselae

Outcome

- Visual prognosis for CSD NR is good.
- Most patients experience significant recovery, regardless of treatment.
- Some clinicians treat with ciprofloxacin, doxycycline, other AB.
Intraorbital Optic Nerve

Clinical Case

• 32 yo WF
• CC: loss of vision OS over 3 days
• Orbital pain w/eye movement OS
• Reduced color perception OS

Objective Findings

Objective Findings

• BCVA 20/20 OD 20/100 OS
• Full but painful (OS) extraocular movements
• +RAPD OS
• Dyschromatopsia OS
• Decreased contrast sensitivity OS
• VF deficits OS
• BP 130/78 mmHg

Additional Testing

• The most appropriate course of action is:
 a. No further testing. Follow up in 3 mon
 b. Order MRI of brain and orbits with contrast and fat suppression, f/u 1 wk.
 c. General ophthalmology consult.
 d. Order RPR, FTA-ABS, f/u 1 wk.

MRI Findings with MS

Left ON: no disc edema

Bright signal lesions (seen best with T2 scan) representing areas of demyelination
The Optic Neuritis Treatment Trial (ONTT)

- Goal: to evaluate the role of corticosteroids in the treatment of unilateral optic neuritis
- Inclusion criteria: unilateral optic neuritis

The ONTT: Methods

- Randomization to one of 3 groups
 1. IV steroids: 250 mg methylprednisolone qid x 3 days, oral prednisone (1mg/kg) x 11 days
 2. Oral steroids: prednisone 1mg/kg/day x 14 days
 3. Oral placebo: 14 days

The ONTT

- Steroids

ONTT: Results

- IV steroids
 - More rapid recovery but same endpoint
 - Protective vs. placebo at 2 years, not 3
- Oral prednisone
 - Higher rate of new ON attacks at 1 year
 - Highest rate of relapse at 5 years

Prognosis

- Natural history: worsening over days to weeks followed by spontaneous recovery
 - 79% of patients begin to recover by 3/52
 - 93% of patients show improvement by 5/52
- Ongoing clinical improvement to 1 year
- VEP latency improves to 2 years

Optic Neuritis

- Retrobulbar ON trace temp pallor from prior optic neuritis
 - Improving VF
Prognosis
- Severity of initial visual loss is related to final visual outcome
- Most recover well
 - 74% ≥ 20/20
 - 92% ≥ 20/40

Visual Sequelae
- Optic nerve head pallor will develop
- VF deficits may persist
- Uhtoff’s phenomenon
- Pulfrich phenomenon

Managing Optic Neuritis and MS
- Positive MRI
 - Consider immunomodulatory therapy ie. interferon or glatiramer acetate
- Patients should be seen by neurology

Optic Neuritis and MS
- Clinical diagnosis
 - 2 demyelinating attacks separated in time and space
 - Sequential optic neuritis in one eye then the other meets criteria
 - Discrete attacks in the same eye meets the criteria
- Radiologic: Mac Donald Criteria

CHAMPS Study
- Effect of Interferon B 1a treatment in patients with optic neuritis and MRI changes compatible with MS
 - Significantly less CDMS
 - Less progression of MRI lesions

Conclusions
- Patients must be investigated for demyelination
- Remember the atypical optic neuritis
Intracanalicular Optic N.

- 9 mm in length
- Travels optic canal
- Accompanied by Ophthalmic A.
- No motion permitted, as ON is tethered within canal
- Vulnerable to ischemia, swelling within fixed-area canal

Intracranial Optic Nerve

- 16 mm long
- Area between optic canal and chiasm
- Intracranial ON lies above Carotid A., roof of sphenoid sinus, sella contents.
- Both Ophthalmic A. and Sup Ophth V. course between SR and intracranial ON
Intracranial Optic Nerve

Topographic Organization

- Fibers in ON follow in an arrangement similar to retina.
 - Sup retinal fibers run sup in ON
 - Inf retinal fibres are below
 - Fibers from temporal/nasal retina run in corresponding parts of ON

Lateral Geniculate Nuclei

- Retinal nerve fibers classified into:
 - _____-cellular (or M-cells)
 - _____-cellular (or P-cells)

Ganglion Cell Projections in the LGN

- “Non-linear” M-cells are usually the first to die in glaucoma.

Blood Supply of Optic N.

- Intraocular Optic Nerve
- Intraorbital Optic Nerve
- Intracanalicular Optic Nerve
- Intracranial Optic Nerve
Blood Supply

- Distal ON (near globe) supplied by branches of Ophthalmic A.
- Near chiasm, supply is from thin BVs of Carotid and Anterior Cerebral A. systems
- Thin BVs from Ant Comm A. supply dorsal chiasm.
- Inf chiasm supplied by Carotid, Post Comm, Post Cerebral A.

Axonal Physiology

- ON axons must conduct action potentials, maintain their structure, protect retinal ganglion cells.
- “Axonal transport” enables ganglion cell bodies to stay informed about activity along axon, at synapse.
Clinical Testing
- History Taking
- Visual Activity
- Visual Field
- Color Vision
- Brightness Comparison
- Pupillary Testing
- Photostress Recovery Test

Visual Fields
- Visual Field defects obey anatomy

Visual Field Interpretation
Visual field loss secondary to optic chiasm = bitemporal defect
- Pituitary adenoma
- Craniopharyngioma
- Glioma
- Meningioma
VF loss secondary to optic tract or radiation disease will occur as a homonymous hemianopsia defect
Examples: Brain tumor, Stroke, Anuerysm

Clinical Testing
- Contrast Sensitivity
- Ophthalmoscopy
- Electrophysiology
 - VEP, ERG
- Imaging Studies
 - Optical Coherence Tomography
 - Neuroimaging
- Cranial N. Workup

Cranial N. Testing
12 Cranial Nerves:
- CN 1 – Frontal lobe
- CN 2 – Thalamus
- CN 3-4 Midbrain
- CN 5-7 Pons
- CN 8-12 Medulla

Disc Edema
Meningitis
Meningitis

Will cause pleocytosis = increase in white blood cells in the CSF
Acute = Hours to days
Chronic = 4 weeks or more
Aseptic meningitis = No CSF bacteria found (example: enterovirus)

PREVIOUS TREATMENT

- 5 Visits to the emergency room
- Visit #4: 10/1/10
 - Tylenol 1000mg
 - Reglan 10 mg
 - Noncontrast CT: unremarkable, with frothy secretions in the sphenoid sinus
- Visit #5: 10/4/10
 - Warm compresses/hot baths/gentle stretching
 - Motrin 600mg q6-8 hrs
 - Flexeril 5mg q4-6 hrs
 - Follow up with PCP and orthopaedic

PHOTOS

Courtesy Dr. Kelly Malloy
VISUAL FIELD

LYMPHOCYTIC CHORIOMENINGITIS
- Rodent-born viral infectious disease
- Primary host is a common house mouse
- 5% of mice in the US carry LCMV
- Person to person transmission hasn’t been reported

Disc Edema

Viral Meningitis
- Herpes Virus meningitis is diagnosed more frequently than before because of better techniques … PCR
- HSV meningitis is more common than HZV meningitis
- CSF work up through PCR (polymerase chain reaction)
- Treatment: IV Acyclovir Q 8 hrs x 14 days

Disc Edema

Bacterial Meningitis
- ~ 30,000 new cases diagnosed each year in the United States
- Streptococcus pneumoniae (pneumococcus)=most frequent etiology
- Neisseria meningococcus
- Haemophilus influenzae
- Treatment: IV ampicillin, cephalosporin, chloramphenicol

Disc Edema

Other causes of Meningitis
- Lyme
- Syphilis
- TB
- Listeria
- Amoeba (swimming)
- West Nile Virus

Questions and Comments?
Pseudotumor cerebri

- PTC or idiopathic intracranial hypertension (IIH) is a disorder of unknown etiology.
- PTC affects predominantly obese women of childbearing age.
- The primary problem is chronically elevated intracranial pressure (ICP), and the most important neurological manifestation is papilledema, which may lead to progressive optic nerve atrophy.

PTC: Symptoms

- Headache (94%)
- Transient visual obscurations or blurring (68%)
- "Wooshing noise" in the ear (58%)
- Pain behind the eye (44%)
- Double vision (38%)
- Visual loss (30%)
- Pain with eye movement (22%)

PTC

- Endocrine risk factors confirmed in epidemiological studies
 - Female sex
 - Reproductive age group
 - Menstrual irregularity
 - Obesity
 - Recent weight gain

![Age at diagnosis of PTC](image)

Peak during 4th decade

![PTC Papilledema](image)

![Optic Atrophy](image)

![PTC](image)

The cerebrospinal fluid circulation.
The superior sagittal sinus and the site of cerebrospinal fluid absorption, the cauliflower-like arachnoid granulations.

Disc Edema

Modified Dandy’s criteria - Pseudo Tumor Cerebri (PTC)

- The patient is awake and alert
- Patient has signs and symptoms of increased intracranial pressure (nausea, vomiting, headache and disc edema)
- Absence of neurological signs except for CN 6 palsy
- Normal neuro-imaging (MRI, MRA, CT must be normal and done before the LP)
- Cerebrospinal pressure must be greater than 200 mm H2O (average opening LP pressure in PTC patient is 300-400)
- CSF must be normal in composition

Disc Edema

- CSF is produced at a rate of 500 ml/day
- Brain can only contain 150 ml

Lumbar Puncture

ICP is normally 0–10 mm Hg

PTC: Treatments

- Workup must include MRI, MRV and LP (spinal tap)
- Weight loss (10% body weight)/dietician
- Diamox (acetazolamide) 250mg bid is the most commonly used diuretic medication.
- PO Prednisone?
- Surgical treatments currently used are optic nerve sheath fenestration. This allows egress of CSF directly into the orbital fat, where it is absorbed into the venous circulation.
- Lumboperitoneal shunt Sx.

OPTIC NERVE SHEATH FENESTRATION
Pseudotumor cerebri and diabetic retinopathy

Disc Edema

Questions and Comments?

Developmental Disorders

- Anomalous Elevation of the Optic Nerve
 - I.e. “Crowded disc”
- Buried Drusen
- Optic N. Hypoplasia
- Superior Segmental Optic N. Hypoplasia
- Hemioptic Hypoplasia
- Tilted Disc
- Morning-Glory Syndrome
- Astrocytic Hamartoma
- Melanocytoma
- Coloboma
- Optic Pit

ONH Drusen

ONH drusen B-scan of ONH drusen

Note lumpy/humpy margin

Hereditary Optic Neuropathy

- Dominant Optic Atrophy
- Recessive Optic Atrophy
- Leber’s Hereditary Optic Neuropathy
- Neurologic Syndromes
- Metabolic Disease
Misc. Optic Neuropathies

- Radiation Optic Neuropathy
- Neuroretinitis
- Carcinomatous Optic Neuropathy
- Diabetic Papillopathy
- Papillophlebitis
- Optic Perineuritis
- Autoimmune-Related Retinopathy and Optic Neuropathy Syndrome (AARON)
- Non-glaucomatous Optic Disc Cupping

Key Points

- Understanding the functional anatomy of the optic nerve is crucial in identifying causes of ON disease.
- A targeted history and thorough ophthalmic workup will usually reveal telltale signs.
- Both laboratory testing and neuroimaging are often necessary.
- Co-manage wisely.

Conclusion

- Optic N. disease can:
 - Result in significant vision loss
 - Signal the presence of life-threatening disease
 - The primary eye care provider plays a crucial role in the diagnosis and treatment of optic nerve disease.

Thank you!

Carlo and Joe